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Abstract. For many coating flows, the profile thickness h, near the front of the coating film, is governed by a 
third-order ordinary differential equation of the form h" = f(h), for some given f(h). We consider here the case of 
dry wall coating which allows for slip in the vicinity of the moving contact-line. For this case, one such model 
equation, due to Greenspan, is f(h) = - 1  + (1 + a ) / (h  2 + a), where a is the slip coefficient. The equation is solved 
using a finite difference scheme, with a contact angle boundary condition prescribed at the moving contact-line. 
Using the maximum thickness of the profile as the control parameter, we show that there is a direct relationship 
between the effective Greenspan slip coefficient and the grid-spacing of the numerical scheme used to solve the 
model equation. In doing so, we show that slip is implicitly built into the numerical scheme through the finite 
grid-spacing. We also show why converged results with finite film thickness cannot be obtained if slip is ignored. 

I. Introduction 

Many researchers have shown (e.g., Levich 1962; see Tuck and Schwartz 1990 for a recent 
survey) that a study of coating flow problems, where surface tension forces are significant, 
very often involves solving third-order ordinary differential equations for the film coating 
thickness in a region local to the moving front of the coating film. For example, in the case of 
a thin film draining under gravity down a dry vertical wall, as shown in Fig. 1, the equation 
governing the profile thickness near the front of the film is given by 

1 
h'" = - 1  + ~-7, (1.1) 

x 
Fig. 1. Drop draining down a vertical wall under gravity. 
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where h(x) is the non-dimensinal profile thickness, measured in multiples of the profile 
thickness upstream of the front, h F. The non-dimensional spatial variable x, measured along 
the wall in the direction of propagation of the film, is defined in multiples of (CrhF/pg) 1/3 
where o- is the surface tension of the fluid, p is the fluid density and g is acceleration due to 
gravity. 

In a recent study of wet-wall coating, where the solid substrate is pre-wetted with a thin 
film of non-dimensional thickness 6, Moriarty et al. (1991) have shown that (1.1), which is 
the limiting case as 6---> 0, is also the model equation for two other coating flows, these being 
spin-coating and spray-coating. The distinction between each coating mechanism on the 
meniscus length scale at the front of the film enters only through the non-dimensionalisation 
of the spatial variable x. Thus study of (1.1) is relevant to many coating flows and is not 
restricted to just one coating process alone. 

Despite the seeming simplicity of (1.1), there are some fundamental difficulties in its 
solution, since it becomes singular at the contact-line, where h = 0. The genesis of this 
singularity is entirely physical, and lies in the so-called 'contact-line paradox'; the classical 
no-slip boundary condition being in direct conflict with the requirement of contact-line 
movement.  

One way of circumventing the contact-line singularity is to introduce a slip coefficient into 
the governing equation which relaxes the no-slip condition in a small region local to the 
contact-line. This idea was used by Greenspan (1978), when he postulated that there was 
some small amount of slip in the vicinity of the contact-line. The slip he proposed was of 
Navier-type (see, e.g., Panton 1984), and so was proportional to the local velocity gradient 
at the contact-line; the factor of proportionality being a / 3 h  where a is a non-dimensional 
slip coefficient and is generally a small number. Hocking (1981) also added a form of slip in 
to the equation; his slip formulation weakened the singularity, rather than removed it. 

Despite the formidable nature of (1.1) when h = 0, it is nevertheless possible to compute 
free surface profiles by ignoring the singularity altogether. Infinite derivatives at the 
contact-line, which would normally be a result of the singularity there, are avoided because 
there is always some amount of numerical slip implicit to any numerical scheme used to solve 
(1.1). The singularity only becomes apparent through the fact that convergence under spatial 
refinement cannot be established. This numerical manifestation arises due to the fact that the 
governing equation is solved at discrete points on the flow domain, i.e. equation (1.1) is 
satisfied at a point close to the contact-line but not at the contact-line itself. 

It has been suggested to us (Davis 1988) that this implicit numerical slip is a function of the 
numerical grid-spacing, Ax. One way of thinking about it is that the no-slip condition can 
only be enforced at discrete nodes in the flow domain. Thus, in the space between the nodes, 
the no-slip condition is not enforced. It is in this space, of length Ax, that the contact-line is 
free to move, so that the smaller the Ax, the smaller the amount of m o v e m e n t - o r  slip. In 
the present work, we show that there is a direct relationship between effective slip and 
numerical grid-spacing. 

2. Procedure 

Following Greenspan's formulation, the governing equation for coating profiles, with the 
addition of slip, is given by 



h'" = - 1  + - -  
l + a  

h 2 + a  
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(2.1) 

which is a more general form of (1.1), reducing to (1.1) when a = 0. The finite difference 
scheme used to approximate the derivative in (2.1) is O(Ax) accurate, so that (2.1) reduces 
to the singular problem of (1.1) if a < O(Ax) ~ 1. In other  words, for all non-zero a,  with 
a > O(Ax) so that the numerical scheme can 'see' the slip, the stress singularity at the 
contact-line is alleviated. 

In order  to ascertain the relationship between the slip coefficient a and the numerical 
grid-spacing Ax, we use the maximum thickness of the profile (called the overshoot)  as the 
control  parameter .  Proceeding in two steps, we firstly solve (2.1) for a given grid-spacing and 
no slip (i.e. a = 0), to determine the overshoot.  We then solve (2.1) with some finite amount  
of slip, and a grid-spacing Ax ~ a so that all results are converged, iterating on a to 
determine the degree of slip required to produce the same amount  of overshoot  as for the 
zero slip case. 

Ordinarily, (2.1) would be solved as an initial value problem using a Runge -Kut t a  
formulation,  with the initial condition being a perturbation from the linearized problem far 
upstream of the contact-line. However ,  this method requires input of the small perturbat ion 
parameter ;  the contact angle at the contact-line comes out as part of the solution and thus 
cannot  be specified a priori. Solution of a general class of these problems using a R u n g e -  
Kutta  method  is discussed in detail by Tuck and Schwartz (1990). 

Since the contact angle is a monotonically increasing function of the overshoot  (Tuck and 
Schwartz 1990), in order  to obtain meaningful results, all computations must be done for a 
constant contact angle ~b. This requires us to solve (2.1) as a boundary value problem using a 
finite-difference scheme, so that the contact angle can be prescribed. 

Two of the boundary conditions are imposed at the contact line, and are 

h = 0  

and 

h'  = - t a n  ~b . 

Note  here that ~b is the contact angle for the nondimensional problem. The correspondence 
z / ~ 2 x l / 3  between this and the physical contact angle ~bp is tan ~b = to'/pgnF) tan ~bp. 

The third boundary condition, derived by Goodwin and Homsy (1990), is an asymptotic 
boundary condition far upstream of the contact line, 

h " -  2 1/3h' + h - 1) = 0 .  

This boundary condition is in agreement with Tuck and Schwartz's initial condition, but does 
not require the input of a small parameter .  

3. The numerical scheme and results 

Equat ion (2.1) is solved by dividing the flow domain into n discrete points, and using 
low-order central differences. The profile thickness h(x) is evaluated at the midpoint of the 



84 J .A .  Moriarty and L.W. Schwartz 

nodes,  so that (2.1) is not actually solved at the contact-line itself. Thus,  in discrete form 

(2.1) can be written 

[ 4 ( 1 +  a )  ] 
h(i + 2) k+~ - 3h(i + 1) k+l + 3h(i) k+~ - h ( i -  1) k+l - Ax 3 - 1 +  (h(i)k + h(i + 1)k) 2 + 4 a  

= 0  (3.1) 

where the k superscript refers to the ktn iteration, and i is the nodal reference point,  with 
i = n corresponding to the nodal  point at the contact-line. A schemata  is illustrated in Fig. 2. 

In the above equation,  the h z te rm is evaluated at the previous iteration level; thus we 
have a system of n linear equations in n unknowns to be solved at each iteration. The 
resultant coefficient matrix is banded with a bandwidth of four, and a pentadiagonal  solver is 
used to calculate h(i) at each iteration. A N e w t o n - R a p h s o n  scheme is used to per form the 
i terations,  and convergence is typically established in five iterations. Computa t ions  were 
pe r fo rmed  on an IBM 3090, using between 103 and 104 nodal points. 

All calculations were done for a contact angle of  45 degrees,  with respect to the 
nondimensional  variables. This would correspond to a physical contact angle such that  tan (~p = (O'/pghZF) -1/3 

Figure 3 shows a comparison between the profile calculated without slip, a = 0, and 
grid-spacing Ax = 0.05, to that profile calculated with a finite degree of slip, a = 0.0064, and 
a grid-spacing Ax = 0.0002. In the latter (finite-slip) calculation, the amount  of  slip was 
chosen to provide the same overshoot  as in the zero-slip case, whilst the grid-spacing was 
chosen small enough to ensure converged results. Note that the zero-slip calculations are 
non-convergent  solutions of the singular problem (2.1) with a = 0. The finite-slip calcula- 
tions, on the other  hand, are converged solutions to the well-posed problem (2.1), when 
a ¢ 0. The  two curves are indistinguishable, with agreement  being to within three decimal 

places. 
A graph of slip coefficient versus grid-spacing for a contact angle ~b = 45 ° is denoted by the 

curve with symbols in Fig. 4. The solid line pertains to the polynomial ,  

a = 0.0173 Ax + 2.24(Ax) z , (3.2) 

which is a good fit to the numerical  data. 

n-2 

n-1 

i=n I N \ \ \ \ \ \ \ ~ \ \ \ \ \ \ \ N I  
contact l ine 

Fig. 2. Schematic of the numerical scheme. Circles represent element end points, and squares represent collocation 
points, where (3.1) is solved. Note that (3.1) is not solved at the contact-line itself. 
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Fig. 3. Comparison of  computed profiles with and without slip. The zero-slip model  (symbols) is computed with a 
grid-spacing of  Ax = 0.05. The finite-slip (a  = 0.0064) model,  denoted by the solid line, is converged. 
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Fig. 4. Slip coefficient a vs grid-spacing Ax (symbols) for a contact angle of  4, = 45 °. The solid line pertains to the 
polynomial  (3.2) .  
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The  fact that  the a vs Ax curve passes th rough  the origin is impor tant .  I t  shows definitively 

that ,  in o rde r  to obta in  finite ove r shoo t  and converged  results with a = 0, a grid-spacing 
Ax = 0 would  be required.  In  o ther  words ,  converged  finite results, if slip is ignored,  can 

never  be obta ined.  This is the numerical  manifes ta t ion  of  the non- in tegrable  force singularity 
at a moving  contact- l ine  when  slip is not  permit ted.  If  a is set equal  to zero ,  whilst Ax is 

m a d e  small,  the ove r shoo t  will increase monoton ica l ly  to infinity. 

Since the ove r shoo t  is a funct ion of  the contact  angle,  (3.2) would  not  universally describe 
a re la t ionship begween  Ax and a for  all contact  angles. For  example ,  a plot  of  a vs Ax for  

the 60 ° case is s teeper  than (3.2),  a l though it still demons t ra tes  the same general  t rend.  

Calculat ions  to look at the relat ionship be tween  grid-spacing and Hock ing ' s  slip coefficient 
wou ld  follow along similar lines to those descr ibed in the present  work,  
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